segunda-feira, 11 de dezembro de 2017

Memória de luz: Um material transparente que absorve luz

Com informações do MIPT -  

Memória de luz: Material transparente pode absorver luz
Este é o esquema de um processo virtual de absorção de luz: uma camada de um material transparente é exposta à luz de ambos os lados, com a intensidade da luz aumentando no tempo. [Imagem: Denis G. Baranov et al. - 10.1364/OPTICA.4.001457]
De opaco a transparente
Um trio de físicos da Rússia, Suécia e EUA descobriu um efeito óptico totalmente incomum: eles demonstraram que é possível absorver "virtualmente" a luz usando um material que não possui capacidade de absorção da luz.
Em outras palavras, eles descobriram como fazer um material transparente comportar-se como opaco, e fazer isto mexendo apenas na própria luz.
As possibilidades de aplicação de um material assim - quando ele for sintetizado - são inumeráveis, mas destaca-se a possibilidade de criação de memórias para a luz, para os futurísticos computadores fotônicos.
Absorção e espalhamento da luz
A absorção da radiação eletromagnética - das ondas de rádio aos raios gama, passando por todas as frequências da luz - é um dos principais efeitos do eletromagnetismo. Esse processo ocorre quando a energia eletromagnética é convertida em calor ou outro tipo de energia dentro de um material absorvente - ou opaco.
O carvão ou a tinta preta parecem pretos porque absorvem a energia da luz visível quase completamente. Outros materiais, como o vidro ou um cristal de quartzo, por exemplo, não têm propriedades absorventes e, por isso, aparecem aos nossos olhos como transparentes.
Em sua pesquisa teórica, os físicos conseguiram desmontar essa noção simples e intuitiva, tornando perfeitamente possível tornar absorvente um material completamente transparente.
Para isso, eles empregaram propriedades matemáticas especiais da matriz de dispersão, uma função que relaciona um campo eletromagnético incidente com o campo de dispersão do sistema. Quando um feixe de luz de intensidade independente do tempo atinge um objeto transparente, a luz não é absorvida, ela é espalhada pelo material - um fenômeno causado pela propriedade unitária da matriz de dispersão.
O que a matemática revelou, no entanto, é que, se a intensidade do feixe incidente for variada no tempo de uma forma precisa, a propriedade unitária da matriz de dispersão pode ser detonada, pelo menos por algum tempo. Em particular, se o crescimento da intensidade da luz for exponencial, a energia incidente total irá se acumular no material transparente, e não simplesmente passar por ele. Sendo assim, o sistema parecerá perfeitamente absorvente quando visto de fora.
Memória de luz: Material transparente pode absorver luz
Os cálculos confirmaram que, quando a intensidade da onda incidente cresce exponencialmente (a linha pontilhada), a luz não é transmitida nem refletida (a curva sólida). Ou seja, a camada parece perfeitamente absorvedora apesar do fato de que ela não possui a capacidade de absorção real. Quando o crescimento exponencial da amplitude da onda incidente é interrompido (em t = 0), a energia bloqueada na camada é liberada. [Imagem: Denis G. Baranov et al. - 10.1364/OPTICA.4.001457]
Aplicações práticas
Essa demonstração não apenas amplia nossa compreensão geral de como a luz se comporta quando interage com materiais transparentes comuns, mas também possui uma ampla gama de aplicações práticas.
Para dar um exemplo, o acúmulo de luz em um material transparente pode ajudar a projetar células de memória óptica que armazenarão informações ópticas sem perdas, liberando-as quando necessário - esse é, de longe, o maior desafio para que os computadores migrem dos elétrons para os fótons, viabilizando a computação de luz.
Agora, a exemplo do que tem ocorrido no campo dos metamateriais e ocorreu particularmente com o hipercristal, começa uma corrida para sintetizar esses materiais transparentes-absorvedores.

Bibliografia:

Coherent virtual absorption based on complex zero excitation for ideal light capturing
Denis G. Baranov, Alex Krasnok, Andrea Alù
Optica
Vol.: 4, Issue 12, pp. 1457-1461
DOI: 10.1364/OPTICA.4.001457
Fonte: Inovação Tecnológica

sábado, 2 de dezembro de 2017

Faça você mesmo: Transforme seu smartphone em um microscópio científico

Redação do Site Inovação Tecnológica -  

Faça você mesmo: Transforme seu smartphone em um microscópio científico
Esquema de funcionamento e construção e foto do protótipo do microscópio baseado no celular. [Imagem: University of Houston]
Microscópio no celular
Pesquisadores da Universidade de Houston, nos EUA, divulgaram um projeto livre para que qualquer interessado possa transformar seu smartphone em um microscópio.
Yulung Sung e seus colegas demonstraram que um smartphone básico, equipado com uma lente plástica de baixo custo, pode ser convertido em um microscópio capaz de fazer microscopia de fluorescência, detectar patógenos transmitidos pela água e executar outras funções de diagnóstico.
"O microscópio de fluorescência é um pau para toda obra, usado em biologia, diagnóstico médico e outros campos para revelar informações sobre as células e tecidos que não podem ser detectadas de outra forma," disse o professor Wei-Chuan Shih, coordenador do projeto.
A ideia é que o projeto de hardware livre permita que técnicas de imagem sofisticadas sejam levadas para áreas mais pobres e sem recursos. Mas o celular-microscópio também pode ter aplicações pessoais, como permitir aos mochileiros uma maneira fácil de testar a existência de agentes patogênicos em rios e riachos antes de beber sua água.
"Nós realmente esperamos que qualquer um que queira construí-lo possa fazê-lo. Todas as peças podem ser feitas com uma impressora 3-D. Não é algo circunscrito aos laboratórios," disse o pesquisador.
Microscópio de código livre
Em 2015, a mesma equipe já havia demonstrado que uma lente de 10 centavos permite transformar um celular em microscópio.
Agora eles criaram também uma plataforma, construída com peças facilmente encontradas no comércio, incluindo blocos Lego, para que o microscópio baseado no celular possa ser usado de forma rápida por não especialistas.
Enquanto os microscópios de mesa convencionais iluminam a amostra de cima, o microscópio no celular ilumina a lâmina pelo lado - a lâmina de vidro contendo a amostra tem cerca de um milímetro de espessura. A luz de um LED viaja através do vidro, refratando-se para permitir que o observador visualize toda a estrutura celular, incluindo o núcleo da célula.
Os resultados de testes com amostras de água para patógenos incluindo a Giardia lamblia e o Cyrptosporidium parvum usando o microscópio faça-você-mesmo foram comparados com os resultados obtidos usando um microscópio óptico de laboratório. A resolução foi ligeiramente maior com o microscópio profissional, mas os pesquisadores relataram uma resolução de dois micrômetros com a tecnologia do microscópio baseado no smartphone.
Embora as instruções para a construção do microscópio já possam ser vistas no artigo publicado pela equipe (veja bibliografia abaixo), a equipe pretende construir um site com instruções simplificadas e mais adequadas à comunidade não especializada.

Bibliografia:

Open-source do-it-yourself multi-color fluorescence smartphone microscopy
Yulung Sung, Fernando Campa, Wei-Chuan Shih
Biomedical Optics Express
Vol.: 8, Issue 11, pp. 5075-5086
DOI: 10.1364/BOE.8.005075
https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-8-11-5075&id=375614
Fonte: Inovação tecnológica

Poeira espacial pode transportar a vida entre planetas

Redação do Site Inovação Tecnológica -  

Poeira espacial pode transportar a vida entre planetas
Experimento que expôs ao espaço 664 amostras biológicas e bioquímicas, durante 18 meses contínuos - e muitas delas sobreviveram.[Imagem: ESA/NASA]








Vida que vem e vida que vai
panspermia é a teoria segundo a qual microrganismos ou moléculas precursoras da vida podem ter surgido espaço afora e caído aqui na Terra - assim como em outros planetas com as condições adequadas.
Vários cientistas têm apoiado essa teoria, mostrando que meteoritos podem ter semeado a vida na Terra ou que a vida pode ter começado no espaço e chegado à Terra em cometas.
O professor Arjun Berera, da Universidade de Edimburgo, na Escócia, acredita que nem mesmo é necessário depender dos asteroides e cometas - para ele, a vida pode se mover entre planetas impulsionada por partículas que mergulham velozmente atmosfera abaixo.
Mais do que isso, ele afirma que os fluxos de poeira interplanetária que bombardeiam continuamente a atmosfera do nosso planeta podem continuar trazendo pequenos organismos de mundos distantes, ou enviando organismos terrestres a outros planetas.
Curiosamente, isso dá sustentação a hipóteses especulativas de que a distribuição geográfica de algumas epidemias na Terra são compatíveis com a chegada de microrganismos do espaço - essas hipóteses nunca foram levadas muito a sério devido à quase impossibilidade de demonstrá-las experimentalmente.
Fluxos rápidos
Berera calculou como o fluxo de poeira espacial de alta velocidade - que pode viajar a até 70 km por segundo - se comporta ao colidir com partículas em um sistema atmosférico.
Ele descobriu que as partículas de poeira cósmica podem atingir partículas atmosféricas, situadas a 150 km ou mais de altitude no caso da Terra, com força suficiente para lançá-las além do limite da gravidade da planeta - eventualmente chegando a outros planetas.
O mesmo mecanismo poderia permitir o intercâmbio de partículas atmosféricas entre planetas distantes, podendo ter trazido originalmente a vida para a Terra.
Algumas bactérias, plantas e pequenos animais chamados tardígrados são conhecidos por sua capacidade de sobreviver no espaço, conforme demonstrado em experimentos na Estação Espacial Internacional. Por isso, defende Berera, é possível que organismos desse tipo possam colidir com a poeira estelar que entra velozmente em nossa atmosfera.
"A proposição de que colisões de poeira espacial poderiam impulsionar organismos por distâncias enormes entre os planetas levanta algumas perspectivas interessantes sobre como a vida e as atmosferas dos planetas se originaram. O feixe veloz de poeira espacial é encontrado por todos os sistemas planetários e pode ser um fator comum para a proliferação da vida," defendeu Berera.

Bibliografia:

Space dust collisions as a planetary escape mechanism
Arjun Berera
Astrobiology
DOI: 10.1089/ast.2017.1662
https://arxiv.org/abs/1711.01895
Fonte: Inovação tecnológica