terça-feira, 24 de fevereiro de 2015

No mundo quântico, o futuro afeta o passado

Com informações da Universidade de Washington - 24/02/2015

No mundo quântico, o futuro afeta o passado
As predições tradicionais (esquerda) ficam no 50-50, enquanto nas "previsões anômalas", ou retrodições, (à direita) o acerto é de 9 para 1. [Imagem: D. Tan et al. (2015)]
O futuro afeta o passado
É muito comum usar dados do passado, as chamadas séries temporais, para prever o futuro. Mas, no mundo quântico, o futuro pode prever o passado com muito mais precisão.
Em uma espécie de jogo de adivinhação jogado com um qubit supercondutor, físicos da Universidade de Washington, nos Estados Unidos, descobriram uma maneira de aumentar muito as chances de adivinhar corretamente o estado de um sistema de dois estados - algo como acertar caras e coroas ao jogar uma moeda.
Combinando informações sobre a evolução do qubit depois de um tempo determinado, com informações sobre a sua evolução até aquele momento, a equipe conseguiu aumentar as chances de acerto dos tradicionais 50-50 para 90-10.
Mesmo se você souber tudo o que a mecânica quântica pode dizer sobre uma partícula quântica, explica o professor Kater Murch, você não pode prever com certeza o resultado de um experimento simples para medir o estado dessa partícula. Tudo o que a mecânica quântica pode nos oferecer são probabilidades estatísticas para os possíveis resultados.
Neste experimento, contudo, é como se o que fizemos hoje mudasse o que fizemos ontem. E, como esta analogia sugere, este resultado experimental tem implicações assustadoras sobre o nosso conceito de tempo e de causalidade - pelo menos no mundo microscópico onde a mecânica quântica se aplica.
No mundo quântico, o futuro afeta o passado
Vários experimentos, dos mais diversos tipos, têm questionado a noção tradicional de causa e efeito. [Imagem: IQOQI/Vienna]
Adivinhação quântica
O dispositivo usado no experimento é um circuito supercondutor simples - um qubit - que passa a obedecer as regras do mundo quântico quando é resfriado até perto do zero absoluto. A equipe usou dois níveis de energia desse qubit - o estado fundamental e um estado excitado - como modelo do sistema quântico. Entre estes dois estados, há um número infinito de estados quânticos que são superposições, ou combinações, dos estados fundamental e excitado.
O estado quântico do circuito é detectado colocando-o dentro de uma caixa de micro-ondas. Uns poucos fótons de micro-ondas são enviados para a caixa, onde os seus campos interagem com o circuito supercondutor. Então, quando os fótons saem da caixa, eles possuem informações sobre o sistema quântico.
Essas "medições fracas" não perturbam o qubit, ao contrário das "medições fortes", feitas com fótons que são ressonantes com a diferença de energia entre os dois estados, que fazem o circuito colapsar em um ou outro estado.
É algo como um jogo de adivinhação quântica, no qual os estados do qubit fazem as vezes da cara e coroa de uma moeda.
Previsão retrospectiva
"Nós começamos cada rodada colocando o qubit em uma superposição dos dois estados," explica Murch. "Então nós fazemos uma medição forte, mas escondemos o resultado, e continuamos monitorando o sistema com medições fracas. Calculando para a frente, usando a equação de Born que expressa a probabilidade de encontrar o sistema em um estado particular, suas chances de acertar são apenas de 50-50."
"Mas você também pode calcular para trás usando algo chamado matriz de efeito. Basta pegar todas as equações e invertê-las. Elas ainda funcionam e você pode simplesmente rastrear a trajetória rumo ao passado.
No mundo quântico, o futuro afeta o passado
Os físicos têm debatido intensamente se o futuro pode afetar o passado se o tempo é real ou é uma ilusão e até mesmo se o futuro do Universo pode estar influenciando o presente. [Imagem: Cortesia Shutterstock/Sam72]
"Portanto, há uma trajetória indo em um curso para trás e uma trajetória indo para a frente, e, se olharmos as duas juntas e pesarmos a informação em ambas igualmente, temos algo que chamamos de uma previsão retrospectiva, ou 'retrodição'," diz Murch.
O espantoso sobre essa espantosa "retrodição" é que ela tem uma precisão de 90%. Quando a equipe tenta prever o resultado da medição forte que feita inicialmente e armazenada, o cálculo acerta nove vezes em cada 10 tentativas.
Em outras palavras, diz Murch, o futuro prevê o passado no mundo quântico.
Flecha do tempo e causalidade
Isto tem implicações para problemas muito profundos da física e da interpretação da realidade, incluindo a tradicional "lei de causa e efeito".
O resultado sugere, por exemplo, que, no mundo quântico o tempo roda tanto para trás quanto para a frente, enquanto que, no mundo clássico em que interagimos, o tempo parece só correr para a frente.
"Não está claro por que no mundo real, o mundo constituído por muitas partículas, o tempo só vai para a frente e a entropia sempre aumenta," disse Murch. "Mas muitas pessoas estão trabalhando nesse problema e eu espero que isso seja resolvido em poucos anos".
Bibliografia:

Prediction and retrodiction for a continuously monitored superconducting qubit
D. Tan, S. J. Weber, I. Siddiqi, Klaus Molmer, Kater W. Murch
Physical Review Letters
Vol.: Accepted paper
http://arxiv.org/abs/1409.0510
Fonte: Inovação Tecnológica

Criação Fantástica Que Gera 100 Litros de Água por Dia

Já está a ser utilizado na Etiópia e apenas podemos esperar que rapidamente chegue a todos os países que sofrem com a falta de água.

O "Warka Water" é uma criação dos dois arquitectos Arturo Vittori e Andreas Vogler, do estúdio Architecture and Vision, e foi apresentado pela primeira vez na Bienal de Veneza de 2012.

A ideia é que a enorme torre conseiga recolher a humidade do ar, por condensação, e depositar a água resultante num recipiente. A torre tem 10 metros e é capaz de gerar 100 litros de água por dia. 

A estrutura é feita em bambu e tem um revestimento de plástico reciclado, tudo para que não sejam necessários materiais poluentes. 

Tudo é muito fácil de montar, por módulos, e no final apenas pesa 60 kg. 

A invenção foi concebida para que a água potável chegue a sítios onde é quase impossível de existir de forma natural.

Dessa forma, melhoram-se substancialmente as condições de vida daquelas pessoas, bem como a sua forma de subsistência. 








Disponível em:http://www.chiadomagazine.com/2014/10/criacao-fantastica-que-gera-100-litros.html

sexta-feira, 20 de fevereiro de 2015

Cientistas quebram simetria da luz

Com informações da Universidade de Viena - 19/12/2014
Cientistas quebram simetria da luz
O efeito foi demonstrado usando uma única nanopartícula de ouro depositada no interior de uma fibra óptica. [Imagem: TU Wien]
 
Luz com direção
Quando uma partícula absorve e emite luz, a luz que sai não é emitida apenas numa direção.
"Uma partícula no espaço livre irá sempre emitir tanta luz em uma direção em particular quanto ela emite na direção oposta," explica o professor Arno Rauschenbeutel, da Universidade de Tecnologia de Viena, na Áustria.
Mas o professor Arno e sua equipe acabam de quebrar essa simetria de emissão da luz usando nanopartículas de ouro acopladas a fibras ópticas ultrafinas.
Na estrutura construída por eles, as propriedades da luz de um laser que incide nas nanopartículas dentro da fibra óptica determinam se a luz emitida pela partícula viajará para a esquerda ou para a direita dentro da fibra.
Segundo a equipe, este novo tipo de interruptor óptico tem o potencial para alavancar de vez a nanofotônica, o que inclui, entre outras utilidades, o uso da luz em lugar da eletricidade no interior dos chips.
Quebra da simetria da luz
Cientistas quebram simetria da luz
A quebra da simetria da luz foi possível explorando um efeito físico já conhecido, o acoplamento spin-órbita. [Imagem: TU Wien]
A quebra da simetria da luz foi possível explorando um efeito físico já conhecido, o acoplamento spin-órbita.
A luz possui um momento angular intrínseco, chamado spin. De forma semelhante a um pêndulo, que pode oscilar em um plano ou se mover em círculos, uma onda de luz também pode ter diferentes sentidos de oscilação - se ela tiver um sentido vibracional bem definido ela é chamado de "onda polarizada".
Normalmente uma onda de luz oscila em um plano perpendicular à sua direção de propagação. Se a oscilação for circular, ela lembra o movimento de uma hélice de avião - então, seu spin, ou seu eixo de rotação, aponta na mesma direção da sua propagação.
Mas as coisas mudam ligeiramente quando a luz se move através de fibras de vidro ultrafinas: sua intensidade é muito alta no interior da fibra, mas diminui rapidamente fora dela.
"Isto leva a um componente de campo adicional na direção da fibra de vidro," explica o professor Arno. O plano rotacional da onda de luz gira 90 graus. "Então, a direção da propagação é perpendicular ao spin, tal como uma bicicleta, que se desloca numa direção que é perpendicular aos eixos das rodas."
Quando a nanopartícula inserida no interior da fibra de vidro é irradiada com um laser de tal forma que ela emita luz de um determinado sentido de rotação, a luz emitida irá então se propagar apenas em uma direção particular no interior da fibra - ou para a esquerda ou para a direita.
Tecnologia prática
"Esta nova tecnologia pode ser facilmente disponibilizada em aplicações comerciais. Já agora todo o experimento cabe dentro de uma caixa de sapatos," disse o professor Arno.
"A técnica pode ser aplicada a circuitos integrados ópticos. Esses sistemas fotônicos poderão substituir um dia os circuitos eletrônicos que utilizamos hoje," prevê ele.
Bibliografia:

Chiral nanophotonic waveguide interface based on spin-orbit interaction of light
Jan Petersen, Jürgen Volz, Arno Rauschenbeutel
Science
Vol.: 346 no. 6205 pp. 67-71
DOI: 10.1126/science.1257671
 
Fonte: Inovação Tecnológica

Mini-LHC de 9 cm bate recorde mundial de energia


Redação do Site Inovação Tecnológica - 18/12/2014
Mini-LHC de 9 cm bate recorde mundial de energia
Acelerador de mesa com 9 cm de comprimento atingiu 4,2 GeV. [Imagem: Roy Kaltschmidt/LBL]
Miniacelerador
Um acelerador de partículas que cabe na palma da mão atingiu energias que rivalizam com instalações gigantescas, com quilômetros de extensão.
Há mais de uma década físicos vêm trabalhando na construção de aceleradores de partículas que caibam sobre uma mesa.
Na verdade já existem até microaceleradores de partículas - o menor deles é um acelerador de elétrons menor que um grão de arroz.
Mas foi em 2006 que pesquisadores franceses apresentaram um acelerador de elétrons a laser que demonstrou que a coisa podia ser levada a sério para aplicações práticas, tanto científicas, quanto tecnológicas.
Agora, Wim Leemans e seus colegas do Laboratório Nacional Lawrence Berkeley, nos Estados Unidos, aceleraram as partículas - elétrons, neste caso - no interior de um tubo de plasma com apenas nove centímetros de comprimento.
A velocidade alcançada pelos elétrons correspondeu a uma energia de 4,25 gigaelétron-volts.
A aceleração em uma distância tão curta corresponde a um gradiente de energia 1.000 vezes maior do que a obtida nos aceleradores de partículas tradicionais e marca um recorde mundial de energia para aceleradores desse tipo, conhecidos como laser-plasma - em 2013, outra equipe havia alcançado 2 GeV em um acelerador de 2 cm de comprimento.
No ano que vem, o LHC (Large Hadron Collider), que tem 27 km de diâmetro, deverá atingir energias totais de 14 teraelétron-volts (TeV). Mas mesmo instalações de tamanho padrão exigem túneis com centenas de metros de comprimento para chegar aos gigaelétron-volts (GeV).
Mini-LHC de 9 cm bate recorde mundial de energia
Simulação computadorizada do plasma no interior do miniacelerador, conforme ele evolui ao longo do canal de 9 cm. [Imagem: Berkeley Lab]
Aceleradores laser-plasma
Aceleradores de partículas tradicionais, como o LHC, aceleram as partículas modulando campos elétricos dentro de conduítes metálicos. É uma técnica que tem um limite de cerca de 100 megaelétron-volts por metro, porque além disso o próprio metal do conduíte é destruído.
Os aceleradores laser-plasma adotam uma abordagem completamente diferente. No caso deste experimento, um pulso de luz laser é injetado em um canudo cheio de plasma por uma abertura de apenas 500 micrômetros. O laser cria um canal através do plasma, assim como ondas que capturam elétrons livres e os aceleram, de forma muito parecida com a maneira com que um surfista ganha velocidade deslizando pela face de uma onda.
A equipe acredita poder alcançar os 10 GeV com seu acelerador de 9 cm. Para isso, segundo Leemans, eles precisarão controlar com mais precisão a densidade do canal de plasma através do qual o laser flui. Em essência, eles precisarão criar um túnel para o pulso de luz que tenha o formato preciso para lidar com os elétrons mais energéticos.
Desafios
Embora a diminuta dimensão do acelerador seja promissora para diminuir os laboratórios, reduzir os custos e permitir um sem-número de experimentos, o miniacelerador ainda depende de um poderoso laser para gerar os pulsos de alta potência que devem ser injetados no plasma.
Neste experimento foi usado um dos lasers mais poderosos do mundo, o BELLA (Berkeley Lab Laser Accelerator), capaz de atingir energias na classe dos petawatts (quatrilhões de watts).
Segundo Leemans, para que os aceleradores de laser-plasma possam caber inteiros sobre uma mesa ainda será necessário fazer avançar também a tecnologia dos próprios lasers.
Bibliografia:

Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime
W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, Cs. Tóth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, E. Esarey
Physical Review Letters
Vol.: 113, 245002
DOI: 10.1103/PhysRevLett.113.245002
 
Fonte: Inovação Tecnológica

sexta-feira, 13 de fevereiro de 2015

O enigma da matéria escura

Apesar dos esforços dos astrônomos, grande parte da matéria do Universo continua a escapar às suas observações. E não sabemos nem mesmo do que ela é feita.
Deformação gravitacional: imagem de um quasar distante, multiplicada pelo efeito de lente gravitacional conhecido como “cruz de Einstein”
Para entender como e do que é feito o Universo, os astrônomos devem fazer cuidadosos recenseamentos dos objetos celestes procurando medir a sua distância e atribuir-lhes uma massa. Nessa tarefa são ajudados pela maravilhosa simplicidade das leis da física, que supomos serem aplicáveis a todo o Universo. As surpresas, por sorte, logo nos lembram que estamos muito longe de ter claras as idéias. Se pensarmos que o estudo do cosmo por meio da radioastronomia, óptica, raios X e gama possa nos fornecer um quadro completo do nosso Universo estaremos cometendo um erro grosseiro. Há décadas sabemos que a matéria luminosa – aquela que “vemos” porque emite radiação eletromagnética, ou seja, luz, ondas de rádio, raios X e gama – é apenas uma parcela insignificante de toda a matéria que exerce uma função gravitacional. Este é o famoso problema da “matéria escura”, um dos desafios mais estimulantes da astrofísica atual.
Matéria escura é certamente um nome evocativo, uma vez que estamos falando de algo cuja natureza é desconhecida e de difícil detecção. Da mesma forma que os buracos negros, a matéria escura escapa às nossas observações diretas. Sabemos com certeza que existe somente porque vemos os seus efeitos sobre a matéria luminosa.
Assim, começamos por nos perguntar como é possível nos darmos conta da existência da matéria escura. A resposta não é unívoca, dado que são aplicadas metodologias diversas dependendo dos objetos a serem considerados. Algumas delas serão descritas a seguir, mas queremos ressaltar desde já que parte do que diremos baseia-se em uma descoberta de Christian Doppler. Em 1842 ele observou que o som emitido por uma fonte em movimento mostra-se, a um observador parado, em uma freqüência superior quando o objeto se aproxima e inferior se o objeto se distancia. É o famoso efeito Doppler, válido para qualquer fenômeno ondulatório, do apito de um trem em alta velocidade à radiação eletromagnética. Se aplicado às linhas presentes nos espectros dos objetos celestes, ele permite determinar a velocidade da fonte de radiação em relação a nós. Mas vamos proceder por ordem, examinando em primeiro lugar as galáxias individualmente para, em seguida, passar ao conjunto das galáxias e portanto ao inteiro Universo observável.
Em uma primeira aproximação, a astronomia calcula a massa de uma galáxia com base em sua luminosidade: galáxias mais luminosas contêm mais estrelas e portanto são mais maciças do que as menos luminosas. Tem-se assim uma medida direta da massa luminosa das galáxias. Existem, porém, outros métodos mais gerais para avaliar a massa total de uma galáxia: eles exploram o movimento de rotação que se estende a todas as suas estrelas, típico das “galáxias em espiral”. A exemplo dos planetas do sistema solar, as estrelas e nuvens de gás que compõem essas galáxias são animadas por um movimento de rotação e descrevem órbitas mais ou menos circulares em torno do centro. Nesse movimento, a velocidade de cada estrela depende, além da distância do seu centro, da parcela de massa galáctica presente no interior da sua órbita. Portanto, o estudo sistemático desses movimentos nos permite medir a massa total das galáxias em espiral. O gráfico das velocidades medidas em função da distância do centro é chamado de curva de rotação galáctica.