sábado, 24 de outubro de 2015

Físicos podem ter encontrado partícula de pura força

Com informações da TU Wien -  

Gluônio: uma partícula de pura força
As partículas que formam o núcleo atômico (esquerda) são formadas por quarks (partículas de matéria) e glúons (partículas de força). Uma bola de glúons (direita) é formada inteiramente por glúons, ou seja, é força pura.[Imagem: TU Wien]
Gluônio
Físicos da Universidade Técnica de Viena, na Áustria, descobriram que um méson já observado experimentalmente - seu nome técnico é f0(1710) - pode ser uma partícula muito especial que vem sendo teorizada há muito tempo, mas nunca havia sido identificada.
Essa partícula é composta de pura força.
Ela é conhecida como "bola de glúons", ou gluônio, embora o termo em inglês (glueball) também faça uma referência ao efeito de "cola" que essa partícula tem para manter juntas as demais partículas - os glúons são partículas "pegajosas" que mantêm as partículas nucleares juntas.
Partícula de força
Os prótons e os nêutrons consistem de partículas elementares ainda menores chamadas quarks, devidamente unidas pela força nuclear forte. "Em física de partículas, cada força é mediada por um tipo especial de partícula de força, e a partícula da força nuclear forte é o glúon," explica o professor Anton Rebhan, que apontou o caminho para o gluônio juntamente com seu colega Frederic Brünner.
Os glúons podem ser vistos como versões mais complicadas dos fótons. Os fótons, que não têm massa, são responsáveis pelas forças do eletromagnetismo, enquanto oito diferentes tipos de glúons desempenham um papel semelhante para a força nuclear forte.
No entanto, há uma diferença importante: os próprios glúons estão sujeitos à sua própria força, algo que não acontece com os fótons. É por isso que não há estados ligados de fótons (moléculas de fótons, por assim dizer), mas uma partícula formada apenas por glúons interligados, formada assim por pura força nuclear, é de fato possível.
Calcula-se que os gluônios sejam instáveis, só podendo ser detectados indiretamente através da análise de seu decaimento. Este processo de decaimento, no entanto, ainda não é totalmente compreendido pelos físicos.
Gluônio: uma partícula de pura força
Os físicos acreditam que o Universo era líquido logo depois do Big Bang porque era formado por uma massa disforme de quarks e glúons, ainda não unidos. [Imagem: Cern]
Múltiplas dimensões
Para desvendar o mistério no reino das partículas fundamentais, Rebhan e Brünner foram buscar inspiração nas equações da gravidade em dimensões cósmicas da Relatividade Geral de Einstein, uma vez que há conexões entre algumas teorias da gravitação em espaços de múltiplas dimensões e teorias que descrevem o comportamento quântico das partículas subatômicas.
Os resultados concordaram muito bem com dados de experimentos recentes realizados em aceleradores de partículas, mostrando que uma ressonância chamada f0(1710) pode de fato ser a bola de glúons há muito procurada.
Confirmação do gluônio
A confirmação da existência do gluônio não se fará esperar.
Dentro dos próximos meses, dois experimentos no LHC (Grande Colisor de Hádrons), chamados TOTEM e LHCb, e um experimento no Acelerador de Pequim (BESIII) deverão produzir novos dados sobre esse decaimento.
"Estes resultados serão cruciais para nossa teoria," disse Anton Rebhan. "Para estes processos multipartículas, a nossa teoria prevê taxas de decaimento que são bastante diferentes das previsões de outros modelos mais simples. Se as medições concordarem com nossos cálculos, isso vai ser um sucesso notável para nossa abordagem."
E, além disso, mostraria mais uma vez que a gravidade em dimensões cósmicas pode ser usada para responder perguntas da física de partículas - de uma forma que representaria mais um grande sucesso da teoria da Relatividade Geral de Einstein, que completará 100 anos no mês que vem.

Bibliografia:

Nonchiral Enhancement of Scalar Glueball Decay in the Witten-Sakai-Sugimoto Model
Frederic Brünner, Anton Rebhan
Physical Review Letters
Vol.: 115, 131601
DOI: 10.1103/PhysRevLett.115.131601

Fonte: Inovação Tecnológica

sexta-feira, 16 de outubro de 2015

Microscópio caseiro com laser (experiência de física e biologia)

Um poderoso microscópio, que aumenta até 1.000 vezes, pode ser feito apenas com uma caneta laser e uma seringa. A única coisa a ser feita é apontar o feixe de luz para a gota e ver a imagem gigante da gota se projetando sobre uma parede.
Para fazer esta experiência, eu coletei água nas margens do Rio Ipiranga, em São Paulo, no lugar exato onde D. Pedro I proclamou a independência do Brasil. Hoje, nesse lugar fica o Parque da Independência, ao lado do Museu do Ipiranga, em São Paulo.

Nessa amostra de água – malcheirosa e poluída – foi possível ver vários microorganismos se movimentando.
O princípio físico desse microscópio é simples: a gota d’água funciona como uma lente esférica. Ela recebe a luz do laser e, como em uma lente biconvexa, faz os raios convergirem e depois se dissiparem, projetando uma imagem na parede. Como os microorganismos da água estão na passagem dessa luz, acabam sendo reproduzidos em tamanho gigante.
Veja, neste link, um artigo científico em inglês que explica com detalhes o trajeto da luz dentro da gota d’água.


Disponível em: http://www.manualdomundo.com.br/2011/11/microscopio-caseiro-com-laser-experiencia-de-fisica-e-biologia/

terça-feira, 13 de outubro de 2015

Inscrições abertas para o MNPEF


O MNPEF está com inscrições abertas para o processo seletivo 2016.  A inscrição para o processo seletivo está sendo realizada on-line, desde 09/10, devendo o candidato preencher o formulário eletrônico disponível no endereço do Mestrado Nacional Profissional em Ensino de Física - MNPEF.


Logo mais estará sendo disponibilizando o Edital Local (Polo 23 - UECE/FECLESC)
http://www.sbfisica.org.br/~mnpef/


O Programa Nacional de Mestrado Profissional em Ensino de Física (MNPEF) é um programa nacional de pós-graduação de caráter profissional, voltado a professores de ensino médio e fundamental com ênfase principal em aspectos de conteúdos na Área de Física. É uma iniciativa da Sociedade Brasileira de Física (SBF) com o objetivo de coordenar diferentes capacidades apresentadas por diversas Instituições de Ensino Superior (IES) distribuídas em todas as regiões do País.
O objetivo é capacitar em nível de mestrado uma fração muito grande professores da Educação Básica quanto ao domínio de conteúdos de Física e de técnicas atuais de ensino para aplicação em sala de aula como, por exemplo, estratégias que utilizam recursos de mídia eletrônica, tecnológicos e/ou computacionais para motivação, informação, experimentação e demonstrações de diferentes fenômenos físicos.
A abrangência deste Programa pretende ser nacional e universal e estar presente em todas as regiões do País, sejam elas localizadas em capitais ou estejam afastadas dos grandes centros. Fica então clara a necessidade da colaboração de recursos humanos com formação adequada localizados em diferentes IES. Para tanto, este Programa estará organizado em Polos Regionais, hospedados por alguma IES, onde ocorrerão as orientações das dissertações e serão ministradas as disciplinas do currículo. Fica igualmente claro que o esforço necessário para este mestrado requer também a participação e/ou colaboração de centros já existentes onde ocorrem mestrados profissionais em ensino de Física.


segunda-feira, 12 de outubro de 2015

Entenda a massa dos neutrinos que rendeu o Nobel de Física

Com informações da Agência Fapesp -  

Entenda a massa dos neutrinos que rendeu o Nobel de Física
Cientistas usam um bote dentro do Observatório de Neutrinos Superkamiokande, formado por milhares de detectores em uma instalação subterrânea, totalmente preenchida com água. [Imagem: Universidade de Tóquio]
Massa dos neutrinos
Duas décadas depois da descoberta das oscilações dos neutrinos, que mostrou que essas partículas possuem massa, os dois principais responsáveis pela façanha, o japonês Takaaki Kajita, do Observatório Superkamiokande (Universidade de Tóquio), e o canadense Arthur McDonald, do Observatório de Neutrinos Sudbury (Universidade Queen's), foram contemplados com o prêmio Nobel de Física de 2015.
Em dois experimentos independentes, as equipes lideradas por Kajita e McDonald demonstraram que os neutrinos podem mudar de identidade - ou de "sabor", conforme o jargão da física de partículas.
Em outras palavras, um tipo de neutrino pode se transformar em outro - hoje são conhecidos três tipos de neutrinos: do elétron, do múon e do tau.
Para que tal mudança ocorra, é preciso que a partícula tenha massa. O chamado Modelo Padrão da Física de Partículas considerava até então que o neutrino não possuía massa.
Conforme explica o físico Robert Garisto, editor da Physical Review Letters, "embora cada neutrino seja produzido com um sabor específico, o seu estado quântico pode evoluir para uma combinação dos três sabores, com as proporções oscilando no tempo. A probabilidade de sua detecção como um neutrino do múon, por exemplo, vai depender do tamanho do componente múon no neutrino no momento da detecção. Quanto menor for a diferença de massa entre os sabores, maior será o período de oscilação, de modo que as oscilações não poderiam ocorrer se todos os sabores tivessem a mesma massa ou não tivessem nenhuma massa, já que o efeito depende apenas da diferença de massa ao quadrado. O período de oscilação também aumenta com a energia do neutrino."
Mar de neutrinos
Entenda a massa dos neutrinos que rendeu o Nobel de Física
A conclusão de que os neutrinos têm massa abriu o caminho para a descoberta de uma nova partícula que pode revolucionar toda a tecnologia, os chamados "pontos de Weyl". [Imagem: Ling Lu et al. - 10.1126/science.aaa9273]
A importância da descoberta para o avanço do conhecimento é enorme, porque, depois do fóton (a partícula da interação eletromagnética), o neutrino é o objeto mais abundante do Universo, descontada a elusiva matéria escura, cuja existência só é depreendida pelo seu efeito gravitacional, mas sobre a qual nada se sabe.
Além disso, diferentemente do fóton, o neutrino quase não interage com a matéria. Por isso a Terra - nós incluídos - recebe e é atravessada regularmente por trilhões de neutrinos sem que percebamos: neutrinos que foram produzidos nos primeiros tempos do Universo; neutrinos provenientes de fontes extragalácticas; neutrinos gerados no interior das estrelas, entre elas, o Sol; e neutrinos resultantes do choque de raios cósmicos com a atmosfera terrestre.
"Os neutrinos têm, por assim dizer, o dom da ubiquidade. E são os mensageiros dos confins do espaço e dos primórdios do tempo, fornecendo informações preciosas sobre a estrutura do Universo. Graças à descoberta das oscilações por Kajita e McDonald, o estudo dos neutrinos é hoje um dos ramos mais dinâmicos da Física, mobilizando pesquisadores que trabalham com partículas e com Cosmologia, com o micro e o macro", explica a professora Renata Zukanovich Funchal, do Instituto de Física da Universidade de São Paulo (USP).
Descoberta do neutrino
Entenda a massa dos neutrinos que rendeu o Nobel de Física
Físicos brasileiros querem abrir uma nova janela para o Universo usando o Detector Mário Schenberg, que está procurando as ondas gravitacionais previstas por Einstein. [Imagem: Xavier P.M.Gratens]
Para avaliar o alcance da descoberta que resultou agora no Nobel, é preciso recuar várias décadas. O neutrino foi a primeira partícula da Física que teve sua existência postulada teoricamente, muito antes da descoberta experimental. Tal postulação foi feita pelo austríaco Wolfgang Pauli (1900-1958) em 1930, para explicar a conservação da energia durante o evento nuclear conhecido como "decaimento beta".
No decaimento beta, o núcleo atômico, que não tem elétrons, emite um elétron. Sabe-se hoje que isso resulta da transmutação de um nêutron em um próton, com a liberação do elétron. Mas, para que a energia final do processo seja igual à energia inicial, como exige a lei da conservação da energia, é preciso que o núcleo emita também outro tipo de partícula além do elétron.
Essa partícula extra proposta por Pauli, que parecia um simples artifício, foi inicialmente encarada com ceticismo pela comunidade científica. Mas o italiano Enrico Fermi (1901-1954) a levou a sério. E, em 1932, atribuiu-lhe o nome de neutrino, que significa "pequeno nêutron" em italiano. O brasileiro Mário Schenberg (1914-1990), que trabalhou com Fermi, foi um dos primeiros a utilizar operacionalmente tal ideia, por meio da qual fechou o balanço energético da explosão das estrelas supernovas - o detector Mário Schenberg, uma homenagem ao físico, está trabalhando em busca de sinais das ondas gravitacionais.
A existência do neutrino foi finalmente confirmada em um experimento conduzido pelos norte-americanos Clyde Cowan e Frederick Reines em 1956. Em 1995, essa descoberta experimental foi contemplada com o Prêmio Nobel, que Reines recebeu, em seu nome e no de Cowan, falecido em 1974.

"No Modelo Padrão, o neutrino faz parte da família dos léptons. Para cada lépton eletricamente carregado (o elétron, o múon e o tau), existe um neutrino correspondente. Portanto, existem três neutrinos: o do elétron, o do múon e o do tau", explica Renata. "Inicialmente, conhecia-se somente o neutrino do elétron. O neutrino do múon foi descoberto em 1962 e o neutrino do tau apenas em 2000."

Fonte: Inovação tecnológica